Endogenous RGS proteins facilitate dopamine D_{2S} receptor coupling to $G_{\alpha o}$ proteins and Ca^{2+} responses in CHO-K1 cells

Elisa A. Boutet-Robinet, Frederic Finana, Thierry Wurch, Petrus J. Pauwels, Luc De Vries*

Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, 17 avenue Jean Moulin, 81106 Castres Cedex, France

Received 11 October 2002; revised 25 November 2002; accepted 25 November 2002

First published online 3 December 2002

Edited by Jacques Hanoune

Abstract The role of RGS proteins on dopaminergic D_{2S} receptor $(D_{2S}R)$ signalling was investigated in Chinese hamster ovary (CHO)-K1 cells, using recombinant RGS protein- and PTX-insensitive $G_{\sigma\sigma}$ proteins. Dopamine-mediated $[^{35}S]GTP\gamma S$ binding was attenuated by more than 60% in CHO-K1 $D_{2S}R$ cells coexpressing a RGS protein- and PTX-insensitive $G_{\sigma\sigma}Gly^{184}Ser:Cys^{351}Ile$ protein versus cells coexpressing a similar amount of PTX-insensitive $G_{\sigma\sigma}Cys^{351}Ile$ protein. Dopamine-agonist-mediated Ca^{2+} responses were dependent on the coexpression with a $G_{\sigma\sigma}Cys^{351}Ile$ protein and were fully abolished upon coexpression with a $G_{\sigma\sigma}Gly^{184}Ser:Cys^{351}Ile$ protein. These results suggest that interactions between the $G_{\sigma\sigma}$ protein and RGS proteins are involved in efficient $D_{2S}R$ signalling. © 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Key words: RGS; Dopamine D₂ receptor; G protein coupling; GTPγS; Ca²⁺ response

1. Introduction

Regulators of G protein signalling (RGS) proteins are GTPase activating proteins (GAP) for G_{α} protein subunits of heterotrimeric G proteins [1,2]. First functionally identified as GAP for the $G_{\alpha i}$ subclass [3], RGS proteins have now been described as GAP for three other G_{α} protein subclasses $G_{\alpha q}$, $G_{\alpha 12/13}$ and $G_{\alpha s}$ also [4–6]. RGS proteins, besides their role as GAP, can play additional roles in cell signalling [7–9]. For example RGS4 can behave as an effector shield for $G_{\alpha\alpha}$ [4], and p115RhoGEF as an effector for $G_{\alpha 13}$ [10]. Most previous studies on RGS proteins emphasise their role as negative regulators in G protein signalling pathways. However, positive effects of overexpressed RGS proteins on G protein coupled receptor (GPCR) signalling have also been reported. For example RGS proteins have been shown to enhance the activation of K⁺ channels [11–13], suggested to be caused by an increase in availability of free $G_{\beta\gamma}$ subunits [14]. A positive

effect of endogenous RGS proteins on signalling can be explained by considering that RGS proteins enhance the overall efficacy of the GDP/GTP binding cycle of the G_{α} protein in a receptor/ G_{α} protein/RGS complex [1]. Few studies on the function of endogenous RGS proteins have emerged. Specific RGS knockouts in mice have defined an important role for RGS9-1 in vision [15], and similar studies implicated RGS2 in phenomena as diverse as T cell activation, anxiety and aggressive behaviour of mice [16], perhaps because of the diversity in multiple possible G_{α} protein partners for RGS2. Recently, a ribozyme approach was used successfully to define receptorselective roles of endogenous RGS3 and RGS5 in smooth muscle cells for muscarinic M3 receptor and angiotensin AT_{1A} receptor, respectively [17]. An alternative way to study the role of RGS proteins in specific G protein signalling pathways is to disrupt the G_{α}/RGS interaction by mutation of the G_{α} subunit. Such a point mutation in $G_{\alpha o}$ protein $(G_{\alpha o}Gly^{184}Ser)$ renders the mutant $G_{\alpha o}$ protein insensitive to RGS proteins, without a change in its GDP release, GTP yS binding and intrinsic GTP hydrolysis parameters [18]. The introduction of this mutation in $G_{\alpha o}$ protein, in combination with the C-terminal Cys³⁵¹Ile (or Cys³⁵¹Gly) mutation that confers pertussis toxin (PTX) insensitivity [19], was shown very useful to study the role of endogenous RGS proteins in $G_{\alpha i/o}$ coupled signalling pathways [20,21]. The dopamine D_2 receptor (D_2R) has been shown to couple via $G_{i/o}$ to diverse effectors in different cell lines [22,23], and in Chinese hamster ovary (CHO)-K1 cells specifically D₂R activation leads to an increase in Ca^{2+} levels [24]. By abolishing the $G_{\alpha\alpha}$ protein/ RGS proteins interactions using the G_{α0}Gly¹⁸⁴Ser:Cys³⁵¹Ile protein, we observed a decrease of D_{2S}R signalling at the level of G_{α} protein activation ([35S]GTP γ S binding) and second messenger (Ca²⁺ response). This suggests that endogenous RGS proteins play a positive role for efficient signalling in a receptor/G protein/RGS/effector complex.

2. Materials and methods

2.1. Cloning of human dopamine D_2 receptor

The short splice variant of the human D_2R (RC: 2.1.DA.02) was cloned as previously described [25] by PCR using oligonucleotide primers designed according to the sequence deposited in the GenBank database (accession number S69899).

2.2. Construction of rat $G_{\alpha o}$ insensitive to PTX and RGS

Rat $G_{\alpha o}$ Cys³⁵¹Ile protein (insensitive to PTX) was constructed as described previously [19]. An additional point mutation Gly¹⁸⁴Ser, conferring insensitivity of $G_{\alpha o}$ subunits to RGS proteins, was introduced by using a Quick Change site-directed mutagenesis kit (Stratagene) according to the supplier's instructions. Mutation was con-

*Corresponding author. Fax: (33)-5-63 71 43 63. E-mail address: luc.de.vries@pierre-fabre.com (L. De Vries).

Abbreviations: AFU, arbitrary fluorescence units; D_{2S}, D_{2short}; CHO, Chinese hamster ovary; DA, dopamine; GAP, GTPase activating protein; GPCR, G protein coupled receptor; PTX, pertussis toxin; D₂R, dopamine D₂ receptor; RGS, regulator of G protein signalling; TBS-T, Tris buffered saline-Tween; (-)-NPA, R(-)-propylnorapomorphine; (+)-NPA, S(+)-propylnorapomorphine

0014-5793/02/\$22.00 © 2002 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved. PII: S 0 0 1 4 - 5 7 9 3 (0 2) 0 3 7 5 3 - 5

firmed by sequencing on ABI Prism 310 Genetic analyser using a Big Dye Terminator Cycle Sequencing reaction kit.

2.3. Cell culture

CHO-K1 cell line stably expressing human $D_{2S}R$ (CHO-K1 $D_{2S}R$) was generated upon dilution of transfected cells (10- to 1000-fold) and selection in Ham's F12 plus 10% heat-inactivated foetal calf serum, penicillin (65 μ g/ml), streptomycine (100 μ g/ml) and geneticin (1.25 mg/ml).

2.4. Membrane preparation

CHO-K1 D₂₈R cells were transfected with either $G_{\alpha o} \text{Cys}^{351} \text{Ile}$ or $G_{\alpha o} \text{Gly}^{184} \text{Ser:Cys}^{351} \text{Ile}$ in pCR3.1 plasmid using Lipofectamine (Gibco BRL) [26]. Cells were harvested 48 h after transfection. Treatment with PTX (20 ng/ml) was performed during 16 h. Membrane preparations were performed as follows: cells were washed with phosphate buffered saline, stored at -80°C , collected mechanically in Tris–HCl 10 mM/EDTA 0.1 mM (pH 7.5), homogenised and centrifuged twice for 10 min at $45\,000\times g$. The final pellet was resuspended in the same buffer and stored at -80°C until further use.

2.5. $[^{35}S]GTP\gamma S$ binding response

[35S]GTPγS binding on membrane preparations from CHO-K1 cells was performed as described previously [27]. Briefly, basal and agonist-dependent [35S]GTPγS binding was performed with membranes incubated at 25°C with or without compound for 30 min in 20 mM HEPES (pH 7.4) supplemented with 30 μM GDP, 100 mM NaCl, 3 mM MgCl₂ and 0.2 mM ascorbic acid followed by addition of 0.5 nM of [35S]GTPγS and another 30 min incubation. Basal [35S]GTPγS binding was defined as [35S]GTPγS binding obtained in absence of compound. Activation of [35S]GTPγS binding was determined as the percentage of increased basal [35S]GTPγS binding after stimulation with compound. EC₅₀ values were defined as the concentration of ligand yielding 50% of its own maximal [35S]GTPγS binding response. Protein levels were quantified with a dye-binding assay kit (Bio-Rad), using bovine serum albumin as a standard [28].

2.6. [3H]Nemonapride binding

Scatchard analysis was performed as described [25] using concentrations of radioligand [³H]nemonapride ranging from 3 pM to 3 nM. Membrane preparations were diluted in 50 mM Tris–HCl, 120 mM NaCl, 5 mM KCl, (pH 7.4). 10 µM of (+)-butaclamol was used to determine non-specific binding. The reactions were stopped after 1 h incubation at 25°C by addition of 3.0 ml of ice-cold 50 mM Tris–HCl (pH 7.7) and rapid filtration over Whatman GF/B glass fibre filters using a Brandel harvester, washed and radioactivity was counted

2.7. Immunological detection

Total proteins (25 µg) from CHO-K1 $D_{28}R$ membranes transfected with either $G_{\alpha\sigma} Cys^{351}$ Ile or $G_{\alpha\sigma} Gly^{184} Ser$: Cys^{351} Ile protein were separated in Tris–glycine SDS gels (12% w/v polyacrylamide) and electrotransfered onto polyvinylidene difluoride membranes. After blocking in TBS–T [10 mM Tris–HCl (pH 7.4), 150 mM NaCl and 0.1% Tween 20 (v/v)]+5% of non-fat milk, the membranes were probed with a polyclonal antibody (1:1000) raised against the whole rat $G_{\alpha\sigma}$ protein (Calbiochem) in TBS–T+1% non-fat milk. Secondary antibody (antirabbit immunoglobulin horseradish peroxidase conjugate, Amersham) incubations and all washes were performed in TBS–T+1% non-fat milk. Detection was performed by enhanced chemiluminescence (Pierce) and exposure to Biomax ML film (Kodak). Densitometric analysis was performed using a computer-based image analysis system (AIS, Imaging Research).

2.8. Measurement of Ca²⁺ responses

CHO-K1 D_{2s}R cells were transfected by electroporation [26] with 10 μg of either empty pCR3.1 vector, $G_{\alpha o} \text{Cys}^{351} \text{Ile}$ or $G_{\alpha o} \text{Gly}^{184} \text{Ser:Cys}^{351} \text{Ile}$ (in pCR3.1). Treatment with PTX (20 ng/ml) was performed during 16 h before Ca²⁺ measurement. Cells were assayed 48 h post-transfection for Ca²⁺ responses after 1 h incubation with 2 μM fluo-3 fluorescent calcium indicator dye as described [26]. Fluorescent readings were made every 2 s for 3 min using a fluorometric imaging plate reader (FLIPR, Molecular Devices). Data for Ca²⁺ responses were expressed in arbitrary fluorescence units (AFU) and were not translated into Ca²⁺ concentrations.

3. Results

The high-efficacy dopaminergic agonists dopamine (DA) and R(-)-propylnorapomorphine [(-)-NPA] produced an increase of respectively $50\pm8\%$ and $65\pm13\%$ over basal [35 S]GTP γ S binding on CHO-K1 D_{2S}R membranes expressing the $G_{\alpha\alpha}$ Cys 351 Ile protein and pretreated with PTX; the partial

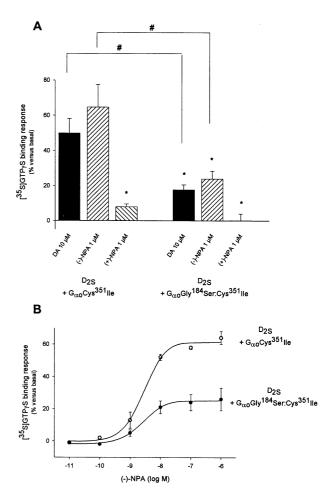


Fig. 1. A: [35S]GTPγS binding response after stimulation with either partial or high-efficacy dopaminergic ligands on PTX-pretreated CHO-K1 D_{2S}R membranes coexpressing either G_{α0}Cys³⁵¹Ile or $G_{\alpha\sigma}Gly^{184}Ser:Cys^{351}Ile$ protein. Results obtained after stimulation with either DA 10 μM, (-)-NPA 1 μM or (+)-NPA 1 μM. The agonists did not stimulate [35S]GTPyS binding on mock-transfected, PTX-pretreated CHO-K1 $D_{2S}R$ membranes, whereas 10 μM of DA stimulated basal [35S]GTPγS binding by 117 ± 10% on mock-transfected CHO-K1 D_{2S}R membrane in the absence of PTX-pretreatment (data not shown). Statistical analysis was performed with oneway analysis of variance followed by an all pairwise multiple comparison (Student-Newman-Keuls procedure). *Difference statistically significant (P < 0.05) versus stimulation of DA on CHO-K1 $D_{2S}R$ membranes expressing $G_{\alpha\sigma}Cys^{351}Ile$ protein. **Difference statistically significant (P < 0.05) for CHO-K1 $D_{2S}R$ membranes expressing $G_{\alpha o}$ Gly¹⁸⁴Ser:Cys³⁵¹Ile protein versus stimulation obtained with the same compound on CHO-K1 $D_{2S}R$ membranes expressing $G_{\alpha\sigma}Cys^{351}$ Ile protein. B: Concentration-dependent [^{35}S]GTP γS binding response of high-efficacy agonist (-)-NPA on PTX-pretreated CHO-K1 $D_{2S}R$ membranes coexpressing either $G_{\alpha\sigma}Cys^{351}Ile$ or $G_{\alpha\sigma}Gly^{184}Ser:Cys^{351}Ile$ protein. Data are expressed as percent of stimulation of basal [$^{35}S]GTP\gamma S$ binding (basal [$^{35}S]GTP\gamma S$ binding was 81 ± 9 fmol/mg of protein and 78 ± 4 fmol/mg of protein when either $G_{\alpha o} Cys^{351} Ile$ or $G_{\alpha o} Gly^{184} Ser : Cys^{351} Ile$ protein was coexpressed, respectively). Data are mean ± S.E.M. of three to four independent experiments, each performed in triplicate.

agonist S(+)-propylnorapomorphine [(+)-NPA] displayed a weak stimulation of $8 \pm 2\%$ of basal [35S]GTP γ S binding on the same membranes (Fig. 1A). When CHO-K1 D_{2S}R cells expressed the $G_{\alpha o} Gly^{184} Ser: Cys^{351} Ile$ protein, instead of the $G_{\alpha\sigma}Cys^{351}$ Ile protein, stimulation of [35S]GTP γ S binding with dopaminergic ligands was reduced by 64% and 62% for DA and (-)-NPA respectively (Fig. 1A). In the same conditions, (+)-NPA was unable to stimulate [35S]GTPγS binding (Fig. 1A). Concentration–response curves of the ligand (–)-NPA for [35S]GTPyS binding revealed that the difference observed could be attributed to reduction in the efficacy of D₂₅R and G_{ao} protein coupling, the ligand potency remaining unchanged (EC₅₀ was 2.7 ± 0.4 nM and 3.3 ± 0.9 nM for CHO-K1 $D_{2S}R$ cells expressing the $G_{\alpha o}Cys^{351}Ile$ protein and the G_{α0}Gly¹⁸⁴Ser:Cys³⁵¹Ile protein, respectively) (Fig. 1B). The above results suggest that endogenous RGS proteins are necessary for efficient activation of recombinant $G_{\alpha o}$ protein via D_{2S}R. Binding analyses of D_{2S}R using [³H]nemonapride as a radioligand revealed similar affinities and receptor expression levels: the $K_{\rm d}$ and $B_{\rm max}$ were 56 ± 12 pM and 1.03 ± 0.10 pmol/ mg of protein respectively for CHO-K1 D_{2S}R cells expressing the $G_{\alpha o}$ Cys³⁵¹Ile protein compared to 64±21 pM and 1.10 ± 0.11 pmol/mg of protein respectively for CHO-K1 $D_{2S}R$ cells expressing the $G_{\alpha\alpha}Gly^{184}Ser:Cys^{351}Ile$ protein. Western blot analysis showed equal expression levels of both G_{α0}Cys³⁵¹Ile and G_{α0}Gly¹⁸⁴Ser:Cys³⁵¹Ile protein (at approximately 40 kDa, Fig. 2; in agreement with its theorical molecular weight calculated from its published sequence, Gen-Bank database accession number M17526). D_{2S}R signalling was also monitored measuring Ca2+ responses. The agonists DA and (-)-NPA induced a strong increase of Ca²⁺ response $(2698 \pm 439 \text{ AFU} \text{ and } 2908 \pm 303 \text{ AFU} \text{ respectively, Fig. 3A})$ in CHO-K1 D_{2S}R cells transfected with the empty pCR3.1 plasmid. This response was totally abolished by PTX pretreatment (Fig. 3A), confirming that this is a $G_{i/o}$ and not a $G_{\alpha/11}$ protein-mediated event in this experimental system. Expression of $G_{\alpha o} \text{Cys}^{351} \text{Ile}$ protein in CHO-K1 $D_{2S} R$ cells restored a PTX-insensitive, DA-mediated Ca²⁺ response (1620 ± 314) and 1763 ± 217 AFU after DA and (-)-NPA stimulation, respectively) (Fig. 3B). By contrast, expression of $G_{\alpha\sigma}Gly^{184}Ser:Cys^{351}Ile$ protein in CHO-K1 $D_{28}R$ cells was unable to restore PTX-insensitive, DA-mediated Ca2+ response (Fig. 3B).

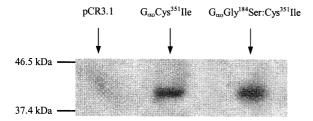


Fig. 2. Immunological detection of $G_{\alpha\sigma}$ proteins in membrane preparations of CHO-K1 $D_{28}R$ cells transfected with either empty pCR3.1 plasmid (mock), $G_{\alpha\sigma}Cys^{351}$ Ile or $G_{\alpha\sigma}Gly^{184}Ser:Cys^{351}$ Ile plasmid, PTX pretreated. Molecular weights are indicated in the left margin. Quantification (percentage versus $G_{\alpha\sigma}Cys^{351}$ Ile protein upon subtraction of the background), was 105% for the $G_{\alpha\sigma}Gly^{184}Ser:Cys^{351}$ Ile protein. A rectangle covering the signal of $G_{\alpha\sigma}Cys^{351}$ Ile protein was identically reproduced as surface template for the quantification of the $G_{\alpha\sigma}Gly^{184}Ser:Cys^{351}$ Ile protein.

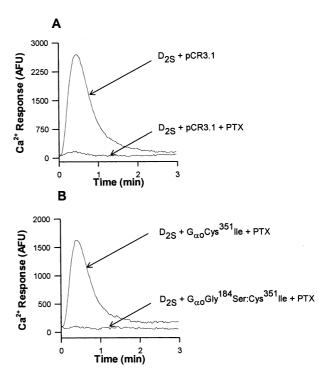


Fig. 3. A: Ca²⁺ response after 10 μM DA stimulation of CHO-K1 D_{2S}R cells transfected with the empty pCR3.1 plasmid, cells non-pretreated or pretreated with PTX. B: 10 μM DA modulation of Ca²⁺ response of CHO-K1 D_{2S}R cells expressing either $G_{\alpha\sigma} \text{Cys}^{351} \text{Ile}$ or $G_{\alpha\sigma} \text{Gly}^{184} \text{Ser:Cys}^{351} \text{Ile}$ protein, cells were pretreated with PTX. Results are expressed in AFU. One representative experiment out of four independent experiments, each experimental point performed in quadruplicate, is shown. For each condition Ca²⁺ response obtained with 1 μM (–)-NPA was similar to response observed with 10 μM DA (data not shown).

4. Discussion

The role of endogenous RGS proteins on the signalling efficacy of the $G_{\alpha o}$ -coupled $D_{2S}R$ was investigated using PTX-insensitive $G_{\alpha\alpha}$ subunits unable to interact with RGS proteins. In CHO-K1 cells, D₂R occupation by dopaminergic agonists activates G_{i/o} signalling pathways, typically leading to inhibition of adenylyl cyclase activity and Ca²⁺ response [24], increase of arachidonic acid release [29], stimulation of the Na⁺/H⁺ exchanger and mitogenesis [30]. By abolishing the G_{αο} protein/RGS proteins interactions and inactivating endogenous $G_{\alpha i/o}$ subunits, we observed a significant drop in the magnitude of agonist-dependent D2R signalling at the level of G_{α} protein activation ([35S]GTP γ S binding) as well as at the level of a second messenger production (Ca2+ response) in CHO-K1 cells. We did not observe a change in the potency for the agonist (-)-NPA (Fig. 1B). Also the affinity of (-)-NPA for the D₂R (measured by displacement of [3 H]nemonapride) was similar in the case of $G_{\alpha o}$ Cys 351 Ile protein coexpression and $G_{\alpha\sigma}Gly^{184}Ser:Cys^{351}Ile$ protein coexpression (data not shown). Neither D₂R nor G protein expression levels displayed a difference, and the observed decrease in coupling is unlikely to result from a difference in [35S]GTP_YS binding due to the Gly¹⁸⁴Ser mutation as compared to the wild type $G_{\alpha o}$ subunit. In fact, Lan and co-workers [18] have described that this mutation does modify neither GDP release, GTP γ S binding nor GTP hydrolysis. It is unlikely that the Gly¹⁸⁴Ser mutation directly influences receptor–G protein coupling; the position of Gly¹⁸⁴ in the first switch region of the G_{α} subunit has never been described for making receptor contacts, but rather for being stabilised by RGS domains [31]. Furthermore, since GTP γ S is considered as a non-hydrolysable analogue of GTP, we presume that the present observation is independent from the GAP activity of RGS proteins that may interact with $G_{\alpha o}$ proteins. From the present results it appears that RGS proteins facilitate $D_{2S}R$: $G_{\alpha o}$ protein coupling, probably because RGS proteins increase the pool of $G_{\alpha o}$ proteins available for activation.

Reasoning along lines of RGS-GAP activity does not explain our observations. Indeed, if the $G_{\alpha o}$ subunit can no more interact with RGS proteins, it should stay active (GTP-bound) a longer time and thus show enhanced signalling towards effectors. The surprising fact that we observed decreased signalling efficacy can be explained in the context of a multiprotein complex. This complex comprises receptor, G protein and RGS protein, in which the G protein/RGS protein interaction is implicated in the activation of the G protein by the receptor. In a reconstituted phospholipid system (containing G_{\alphai1} protein and muscarinic M₂ receptor) at steady state, the addition of RGS4 increases the rate of receptor-catalysed GDP/GTP exchange (measured by an increase of GTP yS binding) [1]. According to the theory of Ross and Wilkie [1] the presence of a RGS protein in the cycle of activation/deactivation of GPCR signalling could also allow the G protein to activate and deactivate without receptor dissociation and thereby favour the overall cycle activation. Thus, the absence of G protein/RGS interaction in a receptor/G protein/RGS protein complex may lead to an alteration of receptor-catalysed GTP_YS loading and a decrease in signalisation mediated by GPCR, which is what we ob-

Although many RGS proteins show affinity and in vitro GAP activity towards $G_{\alpha o}$ subunits, the functional RGS partner for $G_{\alpha o}$ protein in our CHO-K1 system remains unknown. By reverse transcription polymerase chain reaction RGS1, RGS2, RGS3, RGS16 and RGS-GAIP mRNAs were shown to be present in CHO-K1 cells [32] and we additionally detected RGS10 mRNA (data not shown). From in vitro studies, RGS12 [33] and RGS14 [34] also seem good candidates; especially RGS12 with its multiple protein binding modules [35] would lend itself well as a scaffolding protein to increase signalling efficacy at the plasma membrane. Similarly it was shown for RGS4 and for RGS-GAIP that domains outside their RGS domain may confer receptor specificity and thus contribute to the efficacy of Ca^{2+} signalling [36,37].

In conclusion, positive effects of RGS proteins on receptor signalling have until now been observed in the frame of enhanced kinetics of K⁺-channel activation [38]. The present study expands this notion and suggests a positive role for RGS proteins in efficacy of GPCR signalling.

Acknowledgements: We sincerely thank Christiane Palmier for radioligand binding expertise. Claudie Cathala and Fabrice Lestienne are greatly acknowledged for the construction of receptor plasmids.

References

- Ross, E.M. and Wilkie, T.M. (2000) Annu. Rev. Biochem. 69, 795–827.
- [2] De Vries, L., Zheng, B., Fischer, T., Elenko, E. and Farquhar, M.G. (2000) Annu. Rev. Pharmacol. Toxicol. 40, 235–271.
- [3] Berman, D.M., Wilkie, T.M. and Gilman, A.G. (1996) Cell 86, 445–452.
- [4] Hepler, J.R., Berman, D.M., Gilman, A.G. and Kozasa, T. (1997) Proc. Natl. Acad. Sci. USA 94, 428–432.
- [5] Kozasa, T., Jiang, X., Hart, M.J., Sternweis, P.M., Singer, W.D., Gilman, A.G., Bollag, G. and Sternweis, P.C. (1998) Science 280, 2109–2111.
- [6] Zheng, B., Ma, Y.C., Ostrom, R.S., Lavoie, C., Gill, G.N., Insel, P.A., Huang, X.Y. and Farquhar, M.G. (2001) Science 294, 1939–1942.
- [7] De Vries, L. and Farquhar, M.G. (1999) Trends Cell. Biol. 9, 138–144.
- [8] Kozasa, T. (2001) Life Sci. 68, 2309-2317.
- [9] Neubig, R.R. and Siderovski, D.P. (2002) Nat. Rev. Drug Discov. 1, 187–197.
- [10] Hart, M.J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W.D., Gilman, A.G., Sternweis, P.C. and Bollag, G. (1998) Science 280, 2112–2114.
- [11] Saitoh, O., Kubo, Y., Miyatani, Y., Asano, T. and Nakata, H. (1997) Nature 390, 525–529.
- [12] Doupnik, C.A., Davidson, N., Lester, H.A. and Kofuji, P. (1997) Proc. Natl. Acad. Sci. USA 94, 10461–10466.
- [13] Chuang, H.H., Yu, M., Jan, Y.N. and Jan, L.Y. (1998) Proc. Natl. Acad. Sci. USA 95, 11727–11732.
- [14] Bunemann, M. and Hosey, M.M. (1998) J. Biol. Chem. 273, 31186–31190.
- [15] Chen, C.K., Burns, M.E., He, W., Wensel, T.G., Baylor, D.A. and Simon, M.I. (2000) Nature 403, 557–560.
- [16] Oliveira-Dos-Santos, A.J., Matsumoto, G., Snow, B.E., Bai, D., Houston, F.P., Whishaw, I.Q., Mariathasan, S., Sasaki, T., Wakeham, A., Ohashi, P.S., Roder, J.C., Barnes, C.A., Siderovski, D.P. and Penninger, J.M. (2000) Proc. Natl. Acad. Sci. USA 97, 12272–12277.
- [17] Wang, Q., Liu, M., Mullah, B., Siderovski, D.P. and Neubig, R.R. (2002) J. Biol. Chem. 277, 24949–24958.
- [18] Lan, K.L., Sarvazyan, N.A., Taussig, R., Mackenzie, R.G., Di-Bello, P.R., Dohlman, H.G. and Neubig, R.R. (1998) J. Biol. Chem. 273, 12794–12797.
- [19] Dupuis, D.S., Tardif, S., Wurch, T., Colpaert, F.C. and Pauwels, P.J. (1999) Neuropharmacology 38, 1035–1041.
- [20] Jeong, S.W. and Ikeda, S.R. (2000) J. Neurosci. 20, 4489–4496.
- [21] Chen, H. and Lambert, N.A. (2000) Proc. Natl. Acad. Sci. USA 97, 12810–12815.
- [22] Vallar, L., Muca, C., Magni, M., Albert, P., Bunzow, J., Mel-dolesi, J. and Civelli, O. (1990) J. Biol. Chem. 265, 10320–10326
- [23] Liu, Y.F., Civelli, O., Grandy, D.K. and Albert, P.R. (1992) J. Neurochem. 59, 2311–2317.
- [24] Hayes, G., Biden, T.J., Selbie, L.A. and Shine, J. (1992) Mol. Endocrinol. 6, 920–926.
- [25] Pauwels, P.J., Finana, F., Tardif, S., Wurch, T. and Colpaert, F.C. (2001) J. Pharmacol. Exp. Ther. 297, 133–140.
- [26] Pauwels, P.J., Tardif, S., Finana, F., Wurch, T. and Colpaert, F.C. (2000) J. Neurochem. 74, 375–384.
- [27] Pauwels, P.J., Tardif, S., Palmier, C., Wurch, T. and Colpaert, F.C. (1997) Neuropharmacology 36, 499–512.
- [28] Bradford, M.M. (1976) Anal. Biochem. 72, 248–254.
- [29] Nilsson, C.L., Hellstrand, M., Ekman, A. and Eriksson, E. (1998) Br. J. Pharmacol. 124, 1651–1658.
- [30] Chio, C.L., Lajiness, M.E. and Huff, R.M. (1994) Mol. Pharmacol. 45, 51–60.
- [31] Tesmer, J.J., Berman, D.M., Gilman, A.G. and Sprang, S.R. (1997) Cell 89, 251–261.
- [32] Takesono, A., Zahner, J., Blumer, K.J., Nagao, T. and Kurose, H. (1999) Biochem. J. 343, 77–85.
- [33] Snow, B.E., Hall, R.A., Krumins, A.M., Brothers, G.M., Bouchard, D., Brothers, C.A., Chung, S., Mangion, J., Gilman, A.G., Lefkowitz, R.J. and Siderovski, D.P. (1998) J. Biol. Chem. 273, 17749–17755.

- [34] Traver, S., Bidot, C., Spassky, N., Baltauss, T., De Tand, M.F., Thomas, J.L., Zalc, B., Janoueix-Lerosey, I. and Gunzburg, J.D. (2000) Biochem. J. 350, 19–29.
- [35] Schiff, M.L., Siderovski, D.P., Jordan, J.D., Brothers, G., Snow, B., De Vries, L., Ortiz, D.F. and Diverse-Pierluissi, M. (2000) Nature 408, 723–727.
- [36] Zeng, W., Xu, X., Popov, S., Mukhopadhyay, S., Chidiac, P.,
- Swistok, J., Danho, W., Yagaloff, K.A., Fisher, S.L., Ross, E.M., Muallem, S. and Wilkie, T.M. (1998) J. Biol. Chem. 273, 34687–34690
- [37] Diverse-Pierluissi, M.A., Fischer, T., Jordan, J.D., Schiff, M., Ortiz, D.F., Farquhar, M.G. and De Vries, L. (1999) J. Biol. Chem. 274, 14490–14494.
- [38] Zerangue, N. and Jan, L.Y. (1998) Curr. Biol. 8, R313-R316.